
Scalable Graph Traversal on Sunway TaihuLight with Ten Million Cores

Heng Lin†, Xiongchao Tang†, Bowen Yu†, Youwei Zhuo1,‡,
Wenguang Chen†§, Jidong Zhai†, Wanwang Yin¶, Weimin Zheng†

†Tsinghua University, ‡University of Southern California,
§Research Institute of Tsinghua University in Shenzhen,

¶National Research Centre of Parallel Computer Engineering and Technology
Email: {linheng11, txc13, yubw15}@mails.tsinghua.edu.cn,

{cwg, zhaijidong, zwm-dcs}@tsinghua.edu.cn, yinwanwang@gmail.com

Abstract—Interest has recently grown in efficiently analyzing
unstructured data such as social network graphs and protein
structures. A fundamental graph algorithm for doing such task
is the Breadth-First Search (BFS) algorithm, the foundation for
many other important graph algorithms such as calculating the
shortest path or finding the maximum flow in graphs.

In this paper, we share our experience of designing and
implementing the BFS algorithm on Sunway TaihuLight, a
newly released machine with 40,960 nodes and 10.6 million
accelerator cores. It tops the Top500 list of June 2016 with a
93.01 petaflops Linpack performance [1].

Designed for extremely large-scale computation and power
efficiency, processors on Sunway TaihuLight employ a unique
heterogeneous many-core architecture and memory hierarchy.
With its extremely large size, the machine provides both op-
portunities and challenges for implementing high-performance
irregular algorithms, such as BFS.

We propose several techniques, including pipelined module
mapping, contention-free data shuffling, and group-based mes-
sage batching, to address the challenges of efficiently utilizing
the features of this large scale heterogeneous machine. We
ultimately achieved 23755.7 giga-traversed edges per second
(GTEPS), which is the best among heterogeneous machines
and the second overall in the Graph500s June 2016 list [2].

Index Terms—Breadth-First Search; heterogeneous; parallel
algorithm; micro-architecture;

1. Introduction
Recently there has been a burst of interest in analyzing
unstructured data, such as social network graphs or protein
structures. However, applications that analyze such data of-
ten suffer from frequent random memory accesses and load
imbalances. A fundamental graph algorithm in analyzing un-
structured data is the Breadth-First Search (BFS) algorithm,
the basis for many other important graph algorithms, such
as the Shortest Path algorithm, or the Maximum Flow algo-
rithm. BFS has been selected as the Graph500 benchmark to
measure the computing power of super-computing systems
for irregular and data-intensive applications.
1Youwei took part in this work at Tsinghua University.

Although considerable amount of research has been
devoted to implementing BFS on large-scale distributed sys-
tems [3]–[5], rather less attention has been paid to systems
with accelerators.

Notably, only one machine among the top ten in the
Graph500 list of November 2015 (Tianhe-2) has accelera-
tors [2]. Furthermore, Tianhe-2 does not use the accelerators
for its Graph500 benchmark test, while the accelerators are
fully employed for its Linpack performance.

The question of how irregular applications, such as BFS,
can leverage the power of accelerators in large-scale parallel
computers is still left to be answered.

In this paper, we share our experience of designing and
implementing the BFS algorithm on Sunway TaihuLight, a
newly released machine with 40,960 nodes or 10.6 million
accelerator cores. It tops the Top500 list of June 2016 with
a 93.01 petaflops (PFlops) Linpack performance [1].

Designed for extremely large-scale calculations and
cost/power-effectiveness, the processors in the Sunway Tai-
huLight system employ a unique heterogeneous many-core
architecture and memory hierarchy. Every processor in Tai-
huLight contains four general-purpose cores, each of which
attaches 64 on-chip accelerator cores. Each accelerator core
has a 64 KB on-chip scratch pad memory. The four general-
purpose cores and the 256 accelerator cores can both access
32GB shared off-chip main memory. Because it is generally
difficult and expensive in chip design and manufacturing to
ensure cache coherence among cores, TaihuLight chooses
not to offer the cache coherence in exchange for more
chip space for computing. That heterogeneous architecture
provides both opportunities and challenges implementing
irregular algorithms, such as BFS. The following features
of TaihuLight significantly impact the BFS design:
Large overhead for thread-switching Neither the general

purpose cores nor the accelerator cores have corre-
sponding hardware that supports multi-threading. With-
out efficient multi-threading support, it is difficult to
implement BFS, which needs asynchronous communi-
cations.

Limited communication patterns for accelerator cores
The 64 accelerator cores attached to every general
purpose core only have an 8 × 8 mesh layout



for on-chip communication. Communications are
only allowed between accelerator cores in the same
row or column. Deadlock-free communications
for any arbitrary pair of accelerator cores are not
supported, while it is difficult to restrict the arbitrary
communication patterns for irregular algorithms on
accelerator cores.

Large scale problem with over-subscribed interconnect
The TaihuLight has 40,960 nodes that are connected
by an FDR InfiniBand (56 Gbps) with a two-level fat
tree topology. The lower level connects 256 nodes
with full bandwidth, while the upper level network
connects the 160 lower level switches with a 1:4
over-subscription ratio. In a simple BFS algorithm,
there are at least one message transfer, which is
termination indicator of current transmission, for each
pair of nodes. What’s more, if the graph is a power-law
graph, most of the vertices’ degree are small, there will
be lots of very small messages. Such small messages
make very inefficient use of bandwidth, causing poor
communication performance.

We propose the following techniques:

Pipelined modules mapping To use the single-threaded
general-purpose core for asynchronous communica-
tions, we leverage the fact that each CPU contains
four general cores, sharing a physical memory. We
decompose the asynchronous BFS algorithm to several
steps, such as receiving messages, sending messages,
processing edges, and forwarding messages, and we
assign each of these steps to one general-purpose
core (network communication and scheduling work) or
the accelerator cores (most of the computing work).
By carefully arranging the memory space and the
read/write sequences, we can make our code run cor-
rectly and efficiently without requiring cache coherence
for shared memory.

Contention-free data shuffling The accelerator cores are
mainly used for edge processing and generating mes-
sages to remote nodes, which have to be grouped
for batched communications. The key step of edge
processing is data shuffling, i.e., generating a mes-
sage for each edge to the computing node, which
contains the destination vertex. To overcome the lim-
ited communication patterns for accelerator cores and
avoid contentions in writing into the main memory,
we propose a contention-free data shuffling schema for
accelerator cores by dividing the accelerator cores into
three groups: consumers, routers, and producers. The
router cores are used to route message from producers
to consumers in a deadlock-free way, while consumer
cores write to non-overlapped main memory regions to
avoid contention.

Group-based message batching To reduce the number of
small messages, we propose a two-level message pass-
ing approach. Nodes are divided into groups. All mes-
sages from one node to another group are batched
into a large message and sent to the relay node in

the destination group. The received message is then
decomposed, and each original message is forwarded
to its real destination in the group by the relay node.
Although this approach seems to slightly increase the
number of messages, it benefits from the fact that
most messages are transferred inside a group, which
is connected by lower level switches that provide full
bandwidth.

We ultimately achieved 23755.7 giga-traversed edges
per second (GTEPS) following the specifications of the
Graph500 benchmark, which is the best result for hetero-
geneous machines and second overall in the June 2016
Graph500 list.

The remainder of this paper is organized as follows.
We will introduce the BFS algorithm in Section 2 and
the architecture of TaihuLight in Section 3. Section 4 and
Section 5 describe our methodology and implementations,
respectively. After evaluating our work in Section 6, we
present related work in Section 7. Section 8 provides a brief
discussion and Section 9 concludes the paper.

2. Breadth-First Search
In this section, we present the basic parallel Breadth-First
Search (BFS) algorithm that will be optimized on the Tai-
huLight system. Further, we split the BFS algorithm into
several modules and analyze the main characterizations.

2.1. Parallel BFS Algorithm

Algorithm 1: Parallel hybrid BFS framework
Input:

G = (V,E): graph representation using CSR format
vr : root vertex

Output:
Prt : parent map

Data:
Curr : vertices in the current level
Next : vertices in the next level
state ∈ {topdown, bottomup}: traversal policy

1 Prt(:)← −1, Prt(vr )← vr
2 Curr ← ∅
3 Next ← {vr}
4 while Next ̸= ∅ do
5 Curr ← Next
6 Next ← ∅
7 state← TRAVERSAL POLICY()
8 if state = topdown then
9 Fork FORWARD HANDLER thread

10 FORWARD GENERATOR()

11 if state = bottomup then
12 Fork FORWARD HANDLER thread
13 Fork BACKWARD HANDLER thread
14 BACKWARD GENERATOR()

15 Join threads and barrier

In this work, we select a 1-dimensional (1D) partitioning
with a direction-optimized algorithm [4], [6] as our basic
framework for the following two major reasons.

First, as the degree of the input graph follows a power
law distribution, the direction optimization [7] can skip
massive unnecessary edge look-ups by combining the con-
ventional Top-Down traversal with a Bottom-Up traversal.
As shown in Algorithm 1, there is a TRAVERSAL POLICY



Algorithm 2: Parallel hybrid BFS: helper functions
Input:

G = (V,E): graph using CSR format
Curr : vertices in the current level
Next : vertices in the next level

Output:
Prt : parent map

1 Function FORWARD_GENERATOR()
2 for u ∈ Curr do
3 for v : (u, v) ∈ E do
4 SEND FORWARD (u, v) to OWNER(v)

5 Function BACKWARD_GENERATOR()
6 for v ∈ V and Prt(v) = −1 do
7 for u : (u, v) ∈ E do
8 SEND BACKWARD (u, v) to OWNER(u)

9 Function FORWARD_HANDLER()
10 RECEIVE FORWARD (u, v)
11 if Prt(v) = −1 then
12 Prt(v)← u
13 Next ← Next ∪ v

14 Function BACKWARD_HANDLER()
15 RECEIVE BACKWARD (u, v)
16 if u ∈ Curr then
17 SEND FORWARD (u, v) to OWNER(v)

function that utilizes runtime statistics to heuristically deter-
mine whether Top-Down or Bottom-Up is the more efficient
traversal strategy. The details of the heuristic traversal policy
can be found in a previous work [7].

Second, the 1D partitioning method uses the Com-
pressed Sparse Row (CSR) data structure to partition the
adjacency matrix of the input graph by rows. Therefore,
each vertex of the input graph belongs to only one partition.
We implement this method in an asynchronous way to not
only eliminate barrier operations but also allow for the
simultaneous execution of different computational modules
within the same process in BFS.

Algorithm 2 elaborates on the main functions of Al-
gorithm 1, with the computation part of these functions
divided into the dispose module and the reaction module,
as shown in Figure 1. These are the most time-consuming
parts of BFS. Section 4.4 discusses the Forward Relay and
Backward Relay modules. Other modules can be mapped
to the same-named functions in Algorithm 2. For example,
the Forward Generator module is mapped to the FOR-
WARD GENERATOR function. Some of these modules are
shared between Top-Down and Bottom-Up traversals.

The reaction module consists of four steps: reading data
from memory, processing the data in the computing unit(s),
writing data to memory, and sending the data to other nodes.
The last two steps are sometimes omitted according to the
result of prior steps. For example, Forward Generator will
read the frontier and graph data from memory. If data exist
that need to be sent to other nodes, the data will be written
into a corresponding send buffer, and the data will be sent
to the corresponding nodes. Other reactions like Backward
Generator have a similar operation pattern and mainly differ
in the second step of processing data in the computing
unit(s).

Backward	
Relay

Backward	
Handler

Top-Down	Traversal

Reaction	Module

Dispose	Module

Forward	
Generator

Forward	
Handler

Forward	
Relay

Bottom-Up	Traversal

Backward	
Generator

Figure 1: Modules in Top-Down and Bottom-Up processes
of BFS. We have two types of modules—reaction and
dispose. Only the reaction modules send the processed data
to other nodes. In this case, Forward Handler is a disposed
module and all others are reaction modules. Forward Relay
and Backward Relay modules are discussed in Section 4.4.

Comparing it to the reaction module, the dispose module
is simpler, as it only contains the preceding three steps of the
reaction module and doesn’t produce any data to send. For
example, Forward Handler reads the messages from other
nodes, checks the frontier, and updates the result in main
memory.

2.2. Characterization of BFS
BFS is a typical graph application with four main charac-
teristics, which are shared by most graph applications.
Frequent data access As BFS contains very few comput-

ing operations, so it is hard to make use of vector op-
erations. Within one computing node, memory access
speed is the main performance bottleneck, while the
network communication speed is the bottleneck in a
distributed system.

Random data access As the neighbors of a vertex can be
any other vertices in the input graph, traversing the
graph requires accessing many parts of the data in a
random manner that cannot be predicted beforehand.
In an asynchronous BFS framework, the random access
becomes random main memory accesses, ranging from
several megabytes to several hundred megabytes, and
random messages between any pair of nodes.

Data dependence Memory access patterns of BFS are
highly input-dependent, which means memory access
locations cannot be determined until the data is read
into the memory. It is therefore difficult to use classic
optimizations such as prefetch to improve the perfor-
mance of memory access.

Non-uniform data distribution The vertices in input
graphs usually follow a power law distribution, and
the distribution of the degree of each vertex is very
imbalanced. Achieving the optimal performance is
challenging because imbalanced vertex degrees cause
significant load balance.

2.3. Graph500
Complementary to the Top500 [1], Graph500 [2], first an-
nounced in November 2010, is a new benchmark for large-



Item Specifications
MPE 1.45 GHz, 32KB L1 D-Cache, 256KB L2
CPE 1.45 GHz, 64KB SPM
CG 1 MPE + 64 CPEs + 1 MC

Node 1 CPU (4 CGs) + 4×8GB DDR3 Memory
Super Node 256 Nodes, FDR 56 Gbps Infiniband

Cabinet 4 Super Nodes
TaihuLight 40 Cabinets

TABLE 1: Sunway TaihuLight specifications.

scale data analysis problems that has received wide accep-
tance. The ranking kernel of Graph500 is BFS along with a
set of specifications.

In detail, the Graph500 benchmark consists of the fol-
lowing steps: (1) generate raw input graph (edge list, etc.),
(2) randomly select 64 nontrivial search roots, (3) construct
graph data structures, (4) run BFS kernel using the 64 search
roots, (5) validate the result of BFS, and (6) compute and
output the final performance of BFS.

We focus on the BFS kernel step because other steps
should be scalable in large parallel environments.

3. TaihuLight Architecture and Challenge
Unlike other heterogeneous supercomputers that use stan-
dalone many-core accelerators (e.g., Nvidia GPU or Intel
Xeon Phi), TaihuLight uses an integrated SW26010 CPU
consisting of 260 cores in each node. We introduce the com-
puting and network subsystems of TaihuLight here, while
other details can be found in [8], [9]. Table 1 lists some
important specifications of TaihuLight. We will elaborate on
these specification numbers in the following subsections.

3.1. SW26010 CPU
Each node of the TaihuLight has one SW26010 CPU, which
is designed as a highly integrated heterogeneous architecture
for high performance computing. Illustrated in Figure 2,
each CPU has four core groups (CGs), connected by a low
latency on-chip network. Each CG consists of one manage-
ment processing element (MPE), one computing processing
element (CPE) cluster, and one memory controller (MC).

Closer	View	of	CPE	Cluster

Register Bus 

Memory Memory

Memory Memory

Mesh Controller

Single CPE

Network	on	Chip

CPE	
Cluster		

MC

MPE

CPE	
Cluster									

MC

MPE

MC

MPE

CPE	
Cluster

MC

MPE
CPE	

Cluster

Figure 2: CPU Architecture of TaihuLight

The MPE is a fully functional 64-bit RISC general pur-
pose core, which supports superscalar processing, memory
management, and the interrupt function. Nevertheless, some
features have limited performance. For instance, the latency
of system interrupt is about 10 us, which is ten times that
of Intel CPU’s, and MPEs within one CPU do not support
cache coherence. Each MPE has a 32 KB L1 data cache, a
32 KB L1 instruction cache, and a 256 KB L2 cache. Both
MPEs and CPEs work at a frequency of 1.45 GHz.

The CPE is a simplified architecture of 64-bit RISC
accelerator core. To minimize the complexity of the CPE,
some unnecessary functions were removed, such as system
interrupt. Further, CPEs only support atomic increase for
atomic operations in main memory. Each CPE has a 16
KB L1 instruction cache and a 64KB scratch pad memory
(SPM). Similar to shared memory in typical GPUs, pro-
grammers need to explicitly control the SPM.

64 CPEs attaching to the same MPE are organized as a
CPE cluster. CPEs within a cluster are connected in an 8*8
mesh topology by register buses. CPEs in the same row or
column can communicate to each other using a fast register
communication, which has very low communication latency.
In one cycle, the register communication can support up to
256-bit communication between two CPEs in the same row
or column, and there are no bandwidth conflicts between
different register communication of CPEs.

The different features of MPE and CPE determine the
types of assignable work. We summarize some of the chal-
lenges involved in applying BFS to SW26010 CPU.

• Asynchronous BFS framework requires several mod-
ules running simultaneously, which the MPE supports
poorly because it can only efficiently support a single
thread. Further, there is no shared cache among MPEs,
which means MPEs have to use main memory for
communication, whose latency is around one hundred
cycles, thus exacerbating the issue.

• In terms of notifications among the CPEs and MPEs,
the large overhead of system interrupt makes it imprac-
tical; thus, we use the global memory for higher latency
interaction.

• BFS accesses a large range of data, normally several
MB, randomly. However, the SPM size of each CPE is
only 64 KB. In the memory hierarchy, the next level
of SPM is global memory, which has a latency that is
100 times larger. Collaboratively using the whole SPM
in a CPE cluster is a possible solution.

• Collaboration within CPEs can use either the main
memory or the register communication. However, the
incomplete atomic operation significantly limits the
former usage. It is inefficient to only use the atomic
increase operation to implement other atomic functions
such as compare-and-swap.

• The register communication between CPEs is sup-
ported by a mesh network using synchronous explicit
messaging. The random access nature of BFS makes it
easy to cause a deadlock in the register communication
once the messaging route includes a cycle.



3.2. Main Memory
In Section 3.1, we showed that each CG has one memory
controller, connected to one 8 GB DDR3 DRAM. Therefore,
each node has 32 GB memory in total (4 DRAMs). We
configure most of this memory for cross segmentation,
which means that the memory is shared among all the MPEs
and CPEs within a CPU that have the same bandwidth.

Figure 3: Direct memory access (DMA) bandwidth bench-
mark of a CPE cluster with different chunk sizes. A CPE
cluster can get the desired bandwidth with a chunk size
equal to or large than 256 Bytes. Compared to that of MPE,
the speed CPE clusters accessing the memory is 10 times
faster than the MPE. Although speed is measured by read
operations, while write has a similar performance.

Since BFS is a memory-intensive application, how to
utilize the memory bandwidth efficiently is a huge concern.
MPEs do not support efficient multi-thread programming,
thus one thread per MPE is the only practical implemen-
tation. When we set the batch size of memory accesses to
256 bytes for every group, the maximum memory bandwidth
MPEs can achieve is 9.4 GB/s. However, CPE clusters can
achieve a much higher bandwidth as high as 28.9 GB/s, as
shown in Figure 3. In BFS design, we should make use of
CPE clusters for most operations.

3.3. Network
The Network topology of TaihuLight is a 2-level fat tree,
including a super node network at the bottom and a central
switching network at the top. The network uses a static
destination-based strategy for its route policy.

Each super node has 256 nodes connected by high-
bandwidth and low-latency network. Full bisection band-
width network is provided within each super node. Central
switching network is responsible for communication among
super nodes, which is designed to use only a quarter of the
potential bandwidth instead of a fully connected network.
TaihuLight uses FDR 56Gbps network interface cards and
provides a 70TB/s bisection network bandwidth in total.

Fat-tree-based networks are widely used in large scale
supercomputers, the random access nature of BFS poses the
following challenges for the network in TaihuLight.

• The random access nature of BFS algorithm produces
messages between each pair of nodes. In reality, every
connection uses 100 KB memory due to the MPI

library, so an MPE needs 4 GB memory just for estab-
lishing connections, which is impractical for memory
intensive applications like BFS.

• Most of the messages between nodes are quite small,
and managing such a large number of small messages
efficiently under a customized fat tree is challenging.

4. Methodology
4.1. Principle
We discussed the BFS algorithm in Section 2 and the
TaihuLight architecture in Section 3. The complex architec-
ture of TaihuLight and the irregular characterization of the
BFS algorithm pose several challenges to the design of the
optimal BFS on such a large-scale heterogeneous system.
We list four main principles that we followed when porting
this application on the TaihuLight.

• BFS is a data intensive application, so we should
maximize the utilization of both memory and network
bandwidth by batching the data.

• Inevitable random data access should be restricted in
a relatively faster device to minimize memory access
overhead.

• To reduce the waiting time caused by the intrinsic
data dependency of BFS, data should be transmitted
or processed as soon as it is ready.

• Atomic operations should be avoided as much as pos-
sible due to their large overhead.

4.2. Pipelined Module Mapping
TaihuLight has two types of heterogeneous processor cores,
i.e., CPE and MPE, which have different functionalities
and computing capacities. To implement a highly efficient
asynchronous BFS framework on this heterogeneous archi-
tecture, we propose a pipelined module mapping technique.
The basic idea is to map different modules of the BFS
algorithm into different CPE clusters to leverage the high
bandwidth of CPE clusters and use a dedicated MPE to
deal with network communication and scheduling work
exclusively.

As shown in Figure 1, we have split the BFS algorithm
into several processing modules, which should run in CPE
clusters concurrently. In a node, we name four MPEs and
four CPE clusters as M0/M1/M2/M3 and C0/C1/C2/C3 re-
spectively. MPEs are dedicated to inter-node communication
and management work, while CPE clusters are in charge of
the main work of each module.

We use two nodes (node0 and node1) to illustrate our
mapping strategy for the Top-Down and Bottom-Up traver-
sals. In the Top-Down traversal of Figure 4(a), we map
Forward Generator module into C0 of node1 and Forward
Handler module into C3 of node0. When C0 in node1
generates enough messages, C0 notifies M0 to send the
messages to a destination node (e.g., node0). All the MPI
work is done on the MPE and no memory copy operations
are needed due to the unified memory view of the MPEs and
CPEs. When receiving a message, M1 in node0 schedules an
idle CPE cluster (e.g., C3) to process the forward messages.



Forward	
Handler

Backward	
Generator

Backward	
Handler

Forward	
Handler

C0

C1

C2

C3

M0

M3

M1

M2

C0
M0

C0

C1

C2

C3

M0

M1

C1

M0

M1

Forward	
Generator

(a)	Top-Down	Process

(b)	Bottom-Up	Process

MPE
CPE	Cluster

Inter	Node	Message
Inner	Node	Message

Node	0 Node	1

Node	0 Node	1

Figure 4: Pipelined module mapping among heterogeneous
units. In a node, four MPEs are named as M0/M1/M2/M3,
and CPE clusters are named as C0/C1/C2/C3. We use
M0 and M1 to send and receive messages, respectively.
C0/C1/C2/C3 are used to process modules whenever one is
available. (a) and (b) show the Top-Down and Bottom-Up
traversals respectively using the pipelined module mapping
technique.

Since MPEs and CPEs have their own clocks and PCs,
the notifications between the MPEs and CPEs use a busy-
wait polling mechanism by checking flags set in memory.
Inside a CPE cluster, we use a more efficient mechanism,
i.e., register communication, to pass the flag. For example,
when an MPE notifies a CPE cluster, the MPE sets a flag
(corresponding module function) in memory of a represen-
tative CPE in the cluster. Then the representative CPE gets
the notification in memory and broadcasts the flag to all
other CPEs in the cluster.

The Bottom-Up traversal is similar to the Top-Down
traversal. In node0, the Backward Generator and Forward
Handler modules are mapped into C0 and C3, respectively.
The data transmission path in the Bottom-Up traversal is
longer than the Top-Down traversal due to more modules,
as shown in Figure 4(b).

To avoid data contention and starvation, in our design,
no more than one CPE cluster executes the same module
in one node at any time. We will discuss this further it in
Section 4.4, where all the modules are described.

4.3. Contention-Free Data Shuffling
In this subsection, we show how to deal with the data shuf-
fling of modules within a CPE cluster. In Section 2, we have
described two types of module, namely the reaction module
and the dispose module. The latter one can be applied in a
CPE cluster by partitioning the input data for different CPEs,
while the former one is much more complex. As discussed

in Section 2.1, the reaction module produces data to be sent
to a dedicated destination in a random manner. Exacerbating
the issue, the data can be generated at any time under an
asynchronous framework. We will show how to employ a
contention-free data shuffling technique to generate the data
and efficiently write it to the corresponding sending buffer
in batches.

Figure 5: Memory bandwidth benchmark of using different
number of CPEs in a CPE cluster with chunk size of 256
Bytes. We find that 16 CPEs can generate an acceptable
memory access bandwidth.

Figure 5 shows that we should use no less than 16 CPEs
within a cluster to fully utilize the memory bandwidth. A
straightforward implementation for CPEs collaboration is to
partition the input data for different CPEs. Then, the data
randomly generated may be written to the same sending
buffer, which requires atomic operations to guarantee co-
herence. However, atomic operations in the main memory
are inefficient and have bad performance in the current
TaihuLight system.

To avoid atomic operations, we leverage the on-chip reg-
ister communication buses of the TaihuLight. We designed
a communication mechanism in which different CPEs can
coordinate their actions and share their local memory, rather
than working separately.

Another problem arises when applying the above mech-
anism. If each CPE is responsible for a set of destinations,
there will be random messages between any pair of CPEs.
However, register communication uses a mesh network and
explicit synchronous interfaces, which means that deadlock
is inevitable.

We propose a technique by carefully assigning three
different roles to CPEs: producer, consumer, and router.
Producers are responsible for reading data from memory
and sending messages to routers using the register bus.
Although the specific work for the producer of different
modules varies, they all generate batched data in the same
way. Routers are responsible for shuffling, e.g., checking
the content of the packet, deciding on the right destination,
and transmitting them to consumers. The rule is that all data
that should eventually be written to the global memory space
goes to the same consumer. Consumers only buffer the data
received and write it back to memory in batches.

We use Forward Generator module as an example,
whose pseudo-code is function FORWARD GENERATOR in



Memory
(Input	Data)

Memory
(Output	Data)

CPE	Cluster
(Shuffling)

A

Producer Router Consumer

Figure 6: Data shuffling within a CPE cluster. Data is
read in batches from memory, then processed and shuffled
in a CPE cluster, written back into memory and sorted
without contention. This technique is suitable for all reaction
modules.

Algorithm 2. the Curr , i.e., current frontier, is parallelized
among producers. Each producer processes the assigned
frontier vertices, i.e., u , by checking each neighbor of the
vertices, i.e., v , then generates the data pairs, i.e., (u, v ).
Each data pair is a message needs to shuffle, the destination
producer is determined by the value of v .

Within a module, each producer processes the assigned
data and generates messages to be sent to specific nodes,
where each node corresponds to a consumer. To satisfy the
mesh network of the register communication, routers are
used to deliver the messages to the consumer. Figure 6
illustrates a working assignment. The blocks are CPEs,
and the small arrows aside represent the forward direction.
In our solution, a column always passes messages in one
direction. The first four columns of producers pass from
left to right, dealing with the heaviest part of module. There
are two columns of routers for upward and downward pass,
which is necessary for deadlock-free configuration. The last
two columns only consume data and guarantee the output
throughput. A deadlock situation cannot arise if there is no
circular wait in the system.

This design has several advantages. First, global memory
reads and writes are issued by producers and consumers.
All the operations can be done in a batched DMA fashion,
which is orders of magnitude faster than fragmented random
access. Second, the strong demand for local memory size in
one single CPE is distributed to 64 CPEs in the same cluster.
Taking consumers as an example, if we have 16 consumers,
16×64KB can be used as a buffer for total memory space.
Using 256 Bytes as the batch size, we can handle up to 1024
destinations in practice, and Section 4.4 explains how to
extend it to 40,000. Based on our communication protocol,
consumers can write to different global memory locations
and therefore incur no overhead in atomic operations. In
general chip design and manufacturing, it is always difficult

and expensive to insert more SRAM space into weak cores.
The communication model proposed simply tackles this
problem simply.

Finally, the number of producers, routers and consumers
depends on specific architecture details. Specifically, DMA
read bandwidth, DMA write bandwidth, CPE processing
rate, and register bus bandwidth together determine the final
count. Combining all the discussions, in a micro-benchmark,
we achieve 10 GB/s register to register bandwidth out of a
theoretical 14.5 GB/s (half of peak bandwidth in Figure 3
for both read and write), which has a significant impact on
overall performance. The evaluation section provides more
detailed results.

We will discuss the utilization of MPEs and CPEs after
introducing the other two modules in Section 4.4.

4.4. Group-Based Message Batching
When the node number becomes extremely large, about
40,000 nodes in the TaihuLight, the peer-to-peer random
messages in an asynchronous BFS framework increase dra-
matically. Apart from the levels with extremely large fron-
tier, i.e., the middle one or two levels of a ceratin BFS
run, the message size in other BFS levels is quite small,
usually less than 1 KB in most cases, resulting in inefficient
bandwidth usage.

Group	0

Group	1

Group	R

Group	N-1

ID	0 ID	1 ID	2 ID	C ID	M-1

Source	Node Relay	Node Destination	Node

Figure 7: Group-based message batching. The machine’s
nodes are arranged as an N × M matrix. Each message
uses a relay node that is in the same row as the destination
node and the same column as the source node.

To solve this problem, we arrange the nodes into an N
× M matrix, that is, N groups, where each group has M
nodes. We split peer-to-peer messaging into two stages. In
stage one, the message is first sent to the relay node that is
located in the same row as destination node and the same
column as the source node. In stage two, the relay node
sends the message to the destination node. The process is
illustrated in Figure 7.

The batching of messages happens in two ways, shown
in Figure 8. In stage one, the messages to the same group
are batched in the source node and sent together, whereas
the receiving relay node shuffles the batched messages and
stores them to the related destination buffer for stage two



Source	Node

Relay	Node
Destination	Node

Stage	One	Message
Stage	Two	Message

Figure 8: A batching example of group-based message
batching technique. The relay node uses a Relay Module
to shuffle the data from stage one, generating data to be
sent in stage two.

usage. The relay node gathers all the messages in the same
column and sends them together in stage two. Since every
node can be a source, relay, or destination node, there is no
obvious bottleneck.

Supposing each pair of nodes sends and receives a mes-
sage small enough, every node will send (N × M) messages,
equal to the amount of nodes. Applying our technique, the
message number is only (N + M - 1) (N messages to the
same column plus M messages to the same row, minus the
node itself), which is a dramatic reduction.

Further, suppose that each connection reserves 100 KB
memory and the total node number is 40,000, the number
of connections for every MPE is reduced from (N × M) to
(N + M - 1), means the MPI library memory overhead is
reduced from (40000 × 100 KB =) 4 GB to ((200 + 200 -
1) * 100 KB =) 40 MB, approximately.

Central	Switches

Source	Node Relay	Node Destination	Node

Figure 9: Logical and physical group mapping. The logical
group is mapped to a super node in the fat-tree topology.

To cancel out the bandwidth overhead further, we map
each communication group into the same super node. Fig-
ure 9 shows the route a message travels. A test is designed
to calculate the additional relay operation overhead. We
compare the speed of sending only relatively big messages

only to the relay node and having the messages sent to
the destination node, through the relay node, to determine
whether this two-step messaging system would cause addi-
tional overhead. The results show that no bandwidth dif-
ference between the two settings exists, as both achieve
an average 1.2 GB/s per node. This may be because the
central network is capped at one fourth of the maximum
bisection bandwidth, resulting in the bandwidth within the
super node being four times higher than the central network,
and the relay operation being hidden by the higher super
node network.

Each relay node includes a shuffling operation with
produced data sent to other nodes; therefore, these are
also reaction modules. We add the module in both forward
and backward routes, namely Forward Relay and Backward
Relay. Figure 1 shows the complete modules of the Top-
Down and Bottom-Up traversals.

Forward	
Handler

Backward	
Handler

C0

C1

C2

C3

M0

M3

M1

M2
C2

M0

C2

M0

M2
C2

M0

M1

Backward	
Generator

Forward	
Generator

Backward	
Relay

Forward	
Relay

Node	0 Node	3

Node	1 Node	2

C0

M2

MPE

CPE	Cluster
Inter	Node	Message
Inner	Node	Message

Figure 10: Complete version of pipelined module mapping
among heterogeneous units. Forward Relay and Backward
Relay modules are added into both forward and backward
path. The Top-Down traversal and Bottom-Up traversal
share some modules only in functionality.

After the two new modules are added, the pipeline
module mapping becomes that shown in Figure 10. We use
a first-come-first-serve module scheduling policy. There are
five modules in the Bottom-Up traversal in total, however,
which is larger than the amount of physical CPE clusters in
a node. A simple but efficient method to solve the probable
deadlock when all the CPE clusters are busy is to process the
module in the MPE instead. According to the profile results,
this rarely occurs because the local processing speed in
CPEs is faster, on average, than the network communication
speed.

5. Implementation
We use the MPI plus a multi-thread programming model, in
which MPI runs only on MPEs, and CPEs using a pthread-



Figure 11: Performance comparison of techniques. The four
lines symbolize different implementations with different
techniques. The tags Relay and Direct indicate whether a
group-based message batching technique in Section 4.4 is
used. The line with the CPE tag shows the result with
the contention-free data shuffling technique in Section 4.3,
while the MPE tag indicates the modules are processed
in the MPE directly. The vertex number of each node on
average is 16 million.

like interface. The following are some implementation de-
tails.
Degree aware prefetch To improve load balance on hub

vertices, which have much large degree of most other
vertices, we prefetch the frontiers of all the hub vertices
on every node to avoid possible network communi-
cation at runtime. We choose a fixed number of hub
vertices per node (212 for Top-Down, 214 for Bottom-
Up), and a bitmap is used for compressing the frontiers.
This method is based on prior work on combined
1D/2D partitioning [4], [10].

Quick processing for small messages If the input of a
module is small enough, the work is done in the MPE
directly instead of sending it to a CPE cluster. We set
the threshold to 1 KB, which is calculated based on
the notification overhead and the memory access ability
difference between the MPEs and the CPE clusters.

Reduce global communication The program gathers fron-
tier data from every hub vertex at every level. The cost
of this operation increases linearly to node numbers.
This operation does not scale well, and we tried to
reduce the cost of this operation as much as possible.
If the hub vertices frontier is empty, which happens
for a number of later levels, a special flag is gathered
instead of a bitmap.

In addition to the above implementation, we also balance
the graph partitioning and optimize the BFS verification
algorithm to scale the entire benchmark to 10.6 million
cores.

6. Evaluation
The Table 1 shows the platform specification. The C and
MPI compiler used are Sunway REACH (Open64 based)
and SWMPI 2.2 (Mvapich 2.2 based), respectively. Our
framework conforms to the Graph500 benchmark specifi-

cations using the Kronecker graph raw data generator, and
the suggested graph parameter, that is, the edge factor, is
fixed to 16.

6.1. Impact of Techniques
We have designed an experiment to evaluate the perfor-
mance of some of the techniques proposed in Section 4.
The contention-free data shuffling technique is compared
by modules processed in the MPE, whose performance is
better than lock-based CPE cluster implementation. Relay
version of the implementation using the group-based mes-
sage batching technique is compared to the direct messaging
version. Figure 11 presents the experimental results.

Comparing Direct MPE with Direct CPE, or Re-
lay MPE with Relay CPE, we can conclude that properly
used CPE clusters can improve performance by a factor of
10. The shuffling within the CPE cluster technique has a
better performance for up to 256 nodes, but it crashes when
the scale increases because of the limitation of SPM size
on the CPEs. Splitting network communications into inner
and inter groups makes this technique functional at larger
scales.

The scalability of Direct MPE is initially linear, but is
capped at 4,096 nodes. This is because too many small mes-
sages limit the bandwidth when every message is directly
sent to the destination nodes. At a scale of 16,384 nodes,
Direct MPE crashes from memory exhaust caused by too
many MPI connections.

The Relay CPE is our final version, combining all the
techniques, which scales with good performance to run on
the whole machine.

6.2. Scaling

Figure 12: Weak scaling of BFS by fixing the vertices
number per node and increase the node number. Different
lines represent different average vertices numbers of each
node.

This part reports the weak scaling result. Three different
data sizes of data are tested, and the per node vertices
numbers are set as 1.6M, 6.5M and 26.2M, which leads to
the vertices numbers of whole 40,768 nodes being 236, 238
and 240, respectively.

From Figure 12, we find that the result has almost linear
weak scaling speedup with the CPU number increasing from
80 to 40,768, owing to the techniques discussed in Section 4.



Authors Year Scale GTEPS Num Processors Architecture Homo. or Hetero.
Ueno [11] 2013 35 317 1,366 (16.4K Cores) + 4096 Xeon X5670 + Fermi M2050 Hetero.
Beamer [3] 2013 35 240 7,187 (115.0K Cores) Cray XK6 Homo.

Hiragushi [12] 2013 31 117 1,024 Tesla M2090 Hetero.
Checconi [4] 2014 40 15,363 65,536 (1.05M Cores) Blue Gene/Q Homo.

Buluc [5] 2015 36 865.3 4,817 (115.6K Cores) Cray XC30 Homo.
(K Computer) [2] 2015 40 38,621.4 82,944 (663.5K Cores) SPARC64 VIIIfx Homo.

Bisson [13] 2016 33 830 4,096 Kepler K20X Hetero.
Present Work 2016 40 23,755.7 40,768 (10.6M Cores) SW26010 Hetero.

TABLE 2: Results of recent works implementing BFS on distributed systems. The result of K Computer from the Graph500
website is also included [2], although no paper has been published yet.

Although the lines share a similar starting point, the
performance diverges as the node number increases. At the
scale of 40,768, the result of 26.2M is nearly four times that
of 6.5M, with the same gap between 6.5M and 1.4M. We
have proposed a group-based batching technique to batch
the massive amounts of small messages, but it is still not
large enough to exhaust the network bandwidth. When data
size is small, such as 1.6M and 6.5M, as shown in Figure 12,
the high latency is the main reason for inefficiency.

6.3. Comparison with Other Work
Table 2 lists recently published results of distributed BFS
work in recent years including both homogeneous and het-
erogeneous architecture. Our work is among the largest scale
and achieves the best result for heterogeneous architecture.

7. Related Work
In recent years, analyzing big data has gained tremendous
attention. BFS, one of the most representative algorithms
among the applications, has attracted many researchers.

Load balance is one of the most challenging problems re-
searchers face when implementing BFS on a heterogeneous
architecture. Scarpazza et al. implement BFS in Cell/BE by
splitting data into chunks to fit the data into local storage
with synergistic processing elements [14]. On GPU, one
simple approach is mapping vertices in the frontier to dis-
crete threads [15], which suffers from a serious load balance
problem. Hong et al. propose a method to somewhat balance
the process by assigning a warp with a set of vertices [16],
while Merrill et al. carefully optimize neighbor-gathering
and status-lookup stage within a Cooperative Thread Array
(CTA) [17]. Other accomplishments, such as [18], [19], use
thread, warp, CTA or the whole processor to deal with
vertices of different degrees. We are inspired from these
pioneers and present a solution suitable to Sunway’s unique
heterogeneous architecture.

When the size of the data increases, the memory of a
single CPU is insufficient. Previously, efforts have been put
into using multi-GPUs [17], [19], a collaborating CPU-GPU
design [20], and external storage [21], [22] to extend the
ability of their programs.

Some attempt to maximize the performance of the BFS
algorithm on a single machine. Optimizing methods include
using bitmaps or a hierarchy structure for frontiers to restrict
random access in a faster cache [23], [24], lock-free array
updates [24], and serializing the random access among
NUMA [23].

Beamer et al. use a direction optimization method that
enables Bottom-Up traversal with traditional Top-Down
traversal, which largely decreases the memory access num-
ber and also improves load balance [7]. This method opens
an interesting path to optimizing BFS. Yasui et al. give an
example of how to refine graph data structure to speed up
Bottom-Up traversal [25].

The distributed BFS algorithm can be divided into 1D
and 2D partitioning in terms of data layout [26]. Buluc et
al. discuss the pros and cons of 1D and 2D partitioning in
their paper [6]. Based on the specific 5D torus network of
BlueGene/Q, Checconi et al. overlap the stages of 2D parti-
tioning and achieve the best performance at that time [27].
The most similar work to ours is the 1D partitioning with
direction optimization given in [4]. However, the difference
in CPU architecture and network cause our designs and
implementations to diverge. Other than, attempts have been
made to make use of heterogeneous devices in a distributed
environment [11]–[13]. However, they failed to achieve ad-
equate results for the reason direction optimization method
is not included.

Pearce et al. have some discussion of how to reduce
the number of communication channels per process and
aggregate messages in a torus network in BlueGene [22],
while our group-based message batching technique focuses
on a large over-subscribed fat-tree network.

Message compression is also an important optimization
method [4], [27], [28], which is orthogonal to our work. It
may be integrated with our work in future.

8. Discussion
The techniques proposed in this paper include both
micro-architecture dependent and independent optimiza-
tions. Among the three techniques we proposed in the paper,
the pipelined module mapping and the group-based message
batching can be applied to other large-scale heterogeneous
architectures in a similar way, while the contention-free data
shuffling technique is quite micro-architecture dependent.

The key operations of the distributed BFS can be viewed
as shuffling dynamically generated data, which is also the
major operations of many other graph algorithms, such as
Single Source Shortest Path (SSSP), Weakly Connected
Component (WCC), PageRank, and K-core decomposition.
All the three key techniques we used are readily applicable
to other irregular graph algorithms.



9. Conclusion
We share our experience of designing and implementing
the BFS algorithm on Sunway TaihuLight, which is a large
scale parallel computer with heterogeneous architecture. We
ultimately achieved running the program on 40,768 nodes,
nearly the whole machine, with a speed of 23,755.7 GTEPS,
which is the best among heterogeneous machines and second
overall in the Graph500s June 2016 list [2].

Acknowledgment
We would like to thank Tianjian Guo and the colleagues
in PACMAN group. We also thank the anonymous re-
viewers for their insightful comments and guideline. This
work is partially supported by NSFC Distinguished Young
Scholars Grant No. 61525202 and National Key Research
and Development Program of China 2016YFB0200100.
The corresponding author is Wenguang Chen (Email:
cwg@tsinghua.edu.cn).

References
[1] Top500, “http://www.top500.org/.”

[2] Graph500, “http://www.graph500.org/.”

[3] S. Beamer, A. Buluc, K. Asanovic, and D. Patterson, “Distributed
memory breadth-first search revisited: Enabling bottom-up search,”
Proceedings of IEEE 27th International Parallel and Distributed
Processing Symposium Workshops and PhD Forum, IPDPSW ’13,
pp. 1618–1627, 2013.

[4] F. Checconi and F. Petrini, “Traversing trillions of edges in real time:
Graph exploration on large-scale parallel machines,” Proceedings of
the International Parallel and Distributed Processing Symposium,
IPDPS ’14, no. December 2010, pp. 425–434, 2014.

[5] A. Buluc, S. Beamer, K. Madduri, K. Asanović, and D. Patterson,
“Distributed-Memory Breadth-First Search on Massive Graphs,” in
Parallel Graph Algorithms, 2015.

[6] A. Buluc and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” Proceedings of International Conference for High
Performance Computing, Networking, Storage and Analysis, SC’11,
pp. 1–12, 2011.

[7] S. Beamer, K. Asanović, and D. Patterson, “Direction-optimizing
breadth-first search,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
SC ’12, vol. 21, no. 3-4, 2012, pp. 137–148.

[8] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang,
W. Xue, F. Liu, F. Qiao, W. Zhao, X. Yin, C. Hou, C. Zhang, W. Ge,
J. Zhang, Y. Wang, C. Zhou, and G. Yang, “The Sunway TaihuLight
supercomputer: system and applications,” Science China Information
Sciences, vol. 072001, 2016.

[9] J. Dongarra, “Report on the Sunway TaihuLight System,” Tech Report
UT-EECS-16-742, p. 2016, 2016.

[10] R. Pearce, M. Gokhale, and N. M. Amato, “Faster Parallel Traversal
of Scale Free Graphs at Extreme Scale with Vertex Delegates,”
Proceedings of International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’14, pp. 549–559, 2014.

[11] K. Ueno and T. Suzumura, “Parallel distributed breadth first search
on GPU,” in Proceedings of 20th Annual International Conference
on High Performance Computing, HiPC’13, 2013, pp. 314–323.

[12] T. Hiragushi and D. Takahashi, “Efficient hybrid breadth-first search
on GPUs,” in ICA3PP’ 13, vol. 8286 LNCS, no. PART 2, 2013, pp.
40–50.

[13] M. Bisson, M. Bernaschi, and E. Mastrostefano, “Parallel Distributed
Breadth First Search on the Kepler Architecture,” Proceedings of
IEEE Transactions on Parallel and Distributed Systems, TPDS ’16,
vol. 27, no. 7, pp. 2091–2102, 2016.

[14] D. P. Scarpazza, O. Villa, and F. Petrini, “Efficient breadth-first search
on the cell/BE processor,” Proceedings of IEEE Transactions on
Parallel and Distributed Systems, TPDS ’08, vol. 19, no. 10, pp.
1381–1395, 2008.

[15] L. L. L. Luo, M. Wong, and W.-m. H. W.-m. Hwu, “An effective GPU
implementation of breadth-first search,” in Proceedings of Design
Automation Conference, DAC ’10, 2010, pp. 52–55.

[16] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating
CUDA graph algorithms at maximum warp,” in Proceedings of the
16th ACM symposium on Principles and practice of parallel pro-
gramming, PPoPP ’11, vol. 46, no. 8, 2011, p. 267.

[17] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph
traversal,” Proceedings of the 17th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, vol. 47, no. 8, p.
117, 2012.

[18] H. Liu and H. H. Huang, “Enterprise: Breadth-first Graph Traversal
on GPUs,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2015,
pp. 68:1—-68:12.

[19] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: a high-performance graph processing library on the GPU,”
in Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’16. New York, New
York, USA: ACM Press, 2016, pp. 1–12.

[20] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph
exploration on multi-core CPU and GPU,” Proceedings of Parallel
Architectures and Compilation Techniques, PACT ’11, pp. 78–88,
2011.

[21] R. Korf and P. Schultze, “Large-scale parallel breadth-first search,”
AAAI ’05, pp. 1380–1385, 2005.

[22] R. Pearce, M. Gokhale, and N. M. Amato, “Scaling techniques for
massive scale-free graphs in distributed (external) memory,” Proceed-
ings of IEEE 27th International Parallel and Distributed Processing
Symposium, IPDPS ’13, pp. 825–836, 2013.

[23] V. Agarwal, D. Pasetto, and D. A. Bader, “Scalable Graph Exploration
on Multicore Processors,” Proceedings of the 2010 ACM/IEEE Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, SC’10, no. November, 2010.

[24] J. Chhugani, N. Satish, C. Kim, J. Sewall, and P. Dubey, “Fast
and efficient graph traversal algorithm for CPUs: Maximizing single-
node efficiency,” in Proceedings of the 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, IPDPS ’12, 2012,
pp. 378–389.

[25] Y. Yasui and K. Fujisawa, “Fast and scalable NUMA-based thread
parallel breadth-first search,” in Proceedings of 2015 International
Conference on High Performance Computing & Simulation, HPCS
’15. IEEE, jul 2015, pp. 377–385.

[26] A. Yoo and K. Henderson, “A Scalable Distributed Parallel Breadth-
First Search Algorithm on BlueGene / L,” Proceedings of the 2005
ACM/IEEE conference on Supercomputing, SC ’05, p. 25, 2005.

[27] F. Checconi, F. Petrini, J. Willcock, A. Lumsdaine, A. R. Choudhury,
and Y. Sabharwal, “Breaking the speed and scalability barriers for
graph exploration on distributed-memory machines,” in Proceedings
of International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’12, 2012.

[28] B. Betkaoui, Y. Wang, D. B. Thomas, and W. Luk, “A Reconfigurable
Computing Approach for Efficient and Scalable Parallel Graph Ex-
ploration,” Proceedings of 2012 IEEE 23rd International Conference
on Application-Specific Systems, Architectures and Processors ASAP
12, pp. 8–15, 2012.


